VOLUME 13, NUMBER 4

each for the other two compounds.

The ionic model proposed for the NaCl-type intermetallic compounds allows one to predict when solid solutions will exist and in which of the elements they will be rich. In the Sn-Te system, NaCl-type compounds rich in Te should be expected because in Sn1-xTe the valency of Te may be balanced by both Sn2+ and Sn4+ ions. It is unlikely, however, that NaCl-type Sn-Te compounds rich in Sn will exist. Similarly compounds of PbS, PbSe, and PbTe rich in the Group-VI element should be attainable, but not those rich in Pb. The high-pressure NaCl-type CdSe and CdTe phases¹² should not have solid solution ranges because of the single stable valences of the atoms involved. In the Sn-Sb system, solid solutions rich in either constituent should occur as has been reported.⁸ Similarly, in the Sn-As system solid solutions rich in either consittuent are to be expected. Although Hagg and Hybinette⁸ did not observe this at atmospheric pressure, we have found that compounds $Sn_{1+x}As$ and $Sn_{1-x}As$ can be made at high pressures and retained metastably at atmospheric pressure. However, they begin to revert to the Sn₄As₂ + SnAs and SnAs + As phases, respectively, within a few hours after release of pressure. A test for superconductivity on what was later realized to be a partially reverted specimen indicated that again in this system a decrease in *n* results in decrease in T_c .

The NaCl-type phases in the In-Te system must therefore also have In-rich phases.⁶ Despite our earlier conclusion¹ to the contrary, such phases, to about $In_{1.15}$ Te, do exist; they cannot be retained metastably very long, but⁶ again for these, T_C decreases with decreasing *n*.

Finally, it is worth emphasizing that the NaCltype structure has now been shown to be favorable to both semiconductivity and superconductivity. If the carrier concentration is high enough, the compound will be a superconductor. This should be true also for the compounds with the Sn_4As_3 structure and for another related structure, the Bi_2Te_3 structure. If it were possible to obtain, for example, a Ge_2Te_3 with the Bi_2Te_3 structure, it would be a superconductor and have a higher transition temperature than that of Ge_3Te_4 .

We wish to thank A. Jayaraman, M. L. Cohen, T. H. Geballe, and P. W. Anderson for discussion and R. G. Maines for technical assistance.

¹S. Geller, A. Jayaraman, and G. W. Hull, Jr., Appl. Phys. Letters <u>4</u>, 35 (1964).

²B. B. Goodman, Nature <u>167</u>, 111 (1951).

³Marvin L. Cohen, Phys. Rev. <u>134</u>, A511 (1964).

⁴J. F. Schooley, W. R. Hosler, and Marvin L. Cohen, Phys. Rev. Letters <u>12</u>, 474 (1964).

⁵R. A. Hein, J. W. Gibson, R. Mazelsky, R. C. Miller, and J. K. Hulm, Phys. Rev. Letters <u>12</u>, 320 (1964).

⁶S. Geller, A. Jayaraman, and G. W. Hull, Jr., to be published.

¹C. H. L. Goodman, J. Phys. Chem. Solids <u>6</u>, 305 (1958).

⁸G. H. Hägg and A. G. Hybinette, Phil. Mag. <u>20</u>, 913 (1953).

⁹A. L. Schawlow and G. E Devlin, Phys. Rev. <u>113</u>, 120 (1959).

¹⁰Hägg and Hybinette (reference 8) reported that the compound Sn_3As_2 was actually the one that existed but had the Sn_4As structure. We have found that " Sn_3As_2 " has two T_c 's, $\sim \frac{1}{3}$ of the specimen at 3.6-3.5°K, $\sim \frac{2}{3}$ at 1.21-1.17°K. The powder photograph indicates that free Sn is present and the T_c 's confirm the presence of Sn and Sn_4As_3 in the right proportions.

¹¹For a discussion of the calculation of these n's, see reference 6.

¹²C. J. M. Rooymans, Phys. Letters <u>4</u>, 186 (1963); A. N. Mariano and E. P. Warekois, Science <u>142</u>, 672 (1963).